If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10x-27000=0
a = 1; b = 10; c = -27000;
Δ = b2-4ac
Δ = 102-4·1·(-27000)
Δ = 108100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108100}=\sqrt{100*1081}=\sqrt{100}*\sqrt{1081}=10\sqrt{1081}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{1081}}{2*1}=\frac{-10-10\sqrt{1081}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{1081}}{2*1}=\frac{-10+10\sqrt{1081}}{2} $
| 3.3n=29.7 | | 4x+3(4x+)=4(7x+3)-3 | | 7^(4x+3)=49^(3x) | | -4(g+15)=16 | | 2.4=f-3.3 | | 4(g+7)-1=19 | | 21=-3.5v | | 7(3w+7)=25 | | -7=-2.2+k | | -8=6.6+h | | 2.3(x)=20.7 | | x-4.6=2.5 | | 48.4=4.4z | | 2(v-68)+11=-25 | | (4x-7)=(x+11) | | -8(m-92)=-16 | | 11+4000/5500=z | | 4w=8=6w-4 | | 105=7x;x | | 3m+4(m−0.50)=12 | | 5.9a=-23.6 | | 24/4(8/2)=x | | -(s-20)=6 | | -(s-20)=60 | | 6+3x=30. | | x.2-7=6 | | x+6x+10=73 | | 3x 8=1.5 2 | | 20-x(5x-4)=5(x-x^2)-2 | | 4(b+1)+4b=36 | | 4(a+1)+4a=36 | | 4000/5500=11/z |